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I INTRODUCTION 

A set of orbit parameters (al, a2, Q3, cw4, 01 5, 01 ) is presented which 

may be used in differential correction schemes. They are being used in the 

Goddard Minimum Variance Orbit Determination Program. 

1 
a 

This set of parameters contains the energy (more precisely -), all 

others being independent of the energy. Consequently, the set of parameters, 

does not exhibit the deterioration in the conditioning of the associated matrices, 

such as shown if the initial state vector, for instance, is used. 

In addition the set is almost completely general allowing for continuous 

transition from circular to elliptic, and from elliptic to parabolic and hyper- 

bolic orbits. No special measures need be taken for equatorial or near equatorial 

orbit planes. The set is not, however, suitable for characterizing rectilinear 

orbits 

The positioning of the orbit plane is achieved by means of rigid rotations 

of this plane about the velocity and position vectors of the nominal orbit. The 

orbit in its plane is positioned by a rigid rotation about the nominal angular 

momentum vector. Thus on the nominal orbit the a a and a are  identically 

zer'o. The remaining a ' s  a re  quantities associated with the size and shape of the 

orbit. For  many problems it is convenient to treat the gravitational constant, p , 
as an additional variable. This report contains the analytic partial derivatives for  

the seventh parameter. In addition, the differential state transformation matrix 

is augmented to a full seven by seven to accommodate this new variable. 

1' 2' 3 
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II 

R, R 

NOTATION 

R ~ ,  R r 
0’ 0’ vo 

H = R X R  

h 

c1 

a 

S 

S -1 

f, g, i, g 

d = R - R  

Gn’ Fn 

a 

B 

0 

Set of parameters defined in body of report. 

Position and velocity vector. 

Magnitude of R, R respectively. 

The initial values of R, R, r, v .  

Angular momentum vector. 

Magnitude of H . 
Gravitational parameter of reference body. 

Semi-major axis. 

Differential state transformation matrix (Jacobi matrix). 

Inverse of S . 

Coefficient functions of the two-body problem. 

The dot product of R and R . 
Stumpff functions of order n . 
Generalized Stumpff variables. 

Regularized differential eccentric anomaly. 

Differential state updating matrix. 
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III ANALYTIC DEFINITION OF THE MODIFIED NASA VARIABLES 

The first three variables consist of three rigid rotations. References 1, 

2 and 3 have described similar sets of parameters. The first variable is 

1 '  (a) A rotation of R (t) about the vector R (t) through a small angle Q 

To obtain an explicit expression for Q (t) as such, consider the expres- 

sion for R (t) after it has been rotated through the small finite angle 

al (t) . Let R' (t) be the resultant value of R (t) . 

1 

R(R*R) H 
1 R'(t) = R  cos Q + (1-cos a ) - ~ s i n Q  l v  1 

Dot H into the whole equation to obtain 

Then taking the limit of sin Q as Q goes to zero gives 1 1 

lim (sin Q ) = + Q (t) 1 1 
Q + o  
R' + R  
1 

Equations (2) and (3) give an explicit expression for 01 (t), namely 
1 

a1 (t) = - lim [ z2 H R'] 

(3) 

R' --R 
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@) The second variable is a rotation of the vector R (t) about the vector 

R (t) through a small angle a 2 '  

(c) The third variable is a rotation of R (t) about the angular momentum 

vector H = R X R  through a small angle CY . 
3 

' '  H x k . R ? ]  
L T  CY (t) = + lim 

kr-R hv 

Since neither the magnitude of r nor the dot product d = R R is allowed 

to vary in this transformation, it is also necessary to rotate R about 

H through an angle CY . However, the angle CY is determined by the 3 3 
rotation of R . 
(d) The fourth variable, 

CY (t) = d  = R . R  4 

6a is a variation in the scalar function d accomplished by rotating 

R (t) about H , since a rotation of R would change 01 through a small 

angle, leaving R (t) and the magnitude of the position vector invariant. 

This is a change in the angle between R and R in the orbital plane. 

4 

3 

(e) The fifth variable, 
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1 
A variation in the scalar function a ,  i.e. 6U5 

stretching the vector R (t) 

such a way as to leave the scalar functions r and d unchanged. 

is accomplished by 

and rotating R (t) in the orbital plane in 

(f) The sixth variable 

The variation 6a is a lengthening of R (t). In addition R (t) is 

lengthened in the proper proportion so as to keep a invariant and 

R (t) is rotated in the plane of the orbit in such a way as to keep d 

unchanged. 

1 6 

5 

(g) In some applications it is useful to consider the earth gravitational 

constant p as a seventh state variable. 



IV LOCAL STATE TRANSFORMATION MATRICES 

It is necessary to be able to transform changes in the Cartesian state 

into changes in the a-state. 

(a) The S-' matrix is defined as the point transformation matrix which 

transforms an infinitesimal vector in the R , R space to the a space. 

-1 A Q = S  A X  

s -1 = (E) 

where a is 01 1' - * * 9 a6 and X represents the (R, R) vector. Using 

the definition for Q from equation (4) we can differentiate it with 
1 

respect to any vector L (i. e. ,  with respect to the components of L 

taken one at a time). In particular, we will let L take on the values 

of R and R respectively. 

Taking the limit of the second term of equation (11) zeros it out. At 

this point we must note that R'  is the new position of the R vector 

which comes from applying the a rotation. Therefore a change in 1 
a would change R' , but not R in this particular definition and vice 

versa. So, in differentiating equation (ll), we differentiate R' only and 

then take the limit since the R, R system is, in effect, the reference 

system. Thus equation (11) becomes 

1 
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V aR 
bL 

H * -  - -  - - -  1 aa 

a L  h2 

Letting L take on the values R and R respectively yields 

Using equation (5) as the definition for o! we find 
2 

Taking the limit yields 

From which we obtain 

H a a2 r - = -  a o!2 
aR O 9 ah 

- =  

h2 

Similarly 

ak 
2 a L  

- = -  H X R - -  a o!3 
a L  hv 
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so that 

Using equation (7) for CY (t) we have 
4 

Differentiating equation (8) to get the fifth row of the S-l matrix yields 

This gives 

If p is used as a seventh variable then: 

aa5  v 2 
- = -  

-1 
The sixth row of the S matrix consists of the partials of CY with respect to 

the elements of R and R respectively. 
6 

CY = [ R S R ? ’ ~  
6 
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so 

6 
3R r aR 

aa 
a3 = R  , - = o  

The seventh row: 

p = p and is not a function of R and R . 

Hence six zeros and 1 on the diagonal. 

Collecting the results of equations (13), (16), (18), (19), (21) and (23) 
-1 

gives us  the S matrix. 

H -V - 
h2 

0 

0 

R 

-2 - R  3 
r 

1 - R  r 

0 

r 
- H  2 
h 

- H X R  2 
hv 

R 

-2 
CL 
-R 

0 

9 



Here H, R, R are  considered row vectors. If p is used as a seventh 

state variable an augmented state transformation matrix results: 

(b) The S matrix is a 

-1 
‘6 

) 0 0 0 0 0  

6 X 6 point transformation matrix representing 

the partials of x through k and p with respect to Q 

Symbolically it is written 

through Q 
1 6 and p.  

A a = S A x  

Since Q Q and Q a re  three rigid rotations of R about R, R about 

R, and R and R about H, respectively, then the partial derivatives of 

any vector L with respect to CL 

1’ 2 3 

and Q are given immediately by 
1’ Q2 3 
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R - X L  r 
- -  - a L  

aQ2 

a L  H 

aQ3 
- X L  h 

- -  - 

Replacing L by R and R respectively in the above equations gives the 

first three columns of the S matrix. Each equation produces one column. 

= o  ) 

ak 
aQl 

- 

aR = o ,  
a OL2 

(2 9) 

must 

be in the orbit plane and thus the partial derivatives must be representable 

as linear combinations of R and R . Further Q 3 
of R about H, hence the partial derivatives of R with respect to Q 

must not entail any change in the direction of R . 

Q and Q define the orbit plane; hence changes in cy 
1 2 394, 536 

is measured by a rotation 

4,5, 6 

The general form for columns 4, 5 and 6 of the S matrix then 

must be: 

j = 4, 5, 6 

11 



This general form permits a lengthening of R and R and a change in 

the angle between them by rotating R about H . The requirement that 

the a ’ s  be independent orbit parameters yields 

the Kronecker delta which equals 1 for i = j and equals zero for i # j . 

The method used to obtain the last three columns of the S matrix 

is to take the definitions of alphas 4, 5, and 6 from equations (7), (8) and 

(9) and differentiate them with respect to a and then to substitute 

equations (30), (31) and (32) into the equations in order to solve for 

the Clj, C and C coefficients. 

j 

2j 3j 

Making the substitutions for aR and aR gives us three equations with aa. aa. 
J 

three unknown C’s for each value of 

+ C  ) d + C  h2 
(‘lj 3j 2j 

J 

j = 4, 5 or  6. Namely 

= 6  
4j 

12 



3 

C r = 6  
1 j  6j ‘ 

From equation (38) we can see that C = C15 = 0, C17 = 0 and that 
14 

1 
‘16 r 

- - - 

Using C = 0, equation (37) gives 
14 

2 - 2 c  . v  

P 
= o  . 33 

s o  c34 = 0 .  

Now equation (36) gives 

C24 h2 = 1 

or 
1 

‘24 h2 
= -  

(3 7) 

(38) 

(39) 

So the fourth column of the S matrix is 

- =- a R  H X R  2 
aa4 h 

13 



Using the fact that C15 = 0, equation (37) gives 

c 3 5  = - - 

And equation (36) gives 

1Ld 2 - 2 + C 2 5 h  = O  
2 v  

-Ild - 
2 2  

2v h 
‘25 

(44) 

(45) 

So the fifth column of the S matrix is 

- -  a R  -Lid H X R  
2 2  

aa5  2v h 

a k -  - -  LL R 
2 

acr5 2 v  

1 
16 r Finally from C = - and equation (37) we have 

2 
2 36 
2 P r 

= O  
-2 c v 

- -  

_ -  - A  
2 2  

r v  ‘36 (49) 

14 



And equation (36) gives 

1-11 ) d + C 2 6 h  2 = O  
r 2 2  r v  

2 
- - -  2 2 2  I d  (% - 1 )  

r v h  '26 

So the sixth column of the S matrix has the components: 

p d ( ? - ' )  H X R  

2 

- aR = -  1 R -  
r 

acr6 r v h  
2 2 2  

- -  ak --A 
2 2  r v 

For seventh column, from equation (38) we have C = 0, from 
1 a 17 0 
A U equation (37) C = - , and from (36) -- - - C27 h" 

37 2 p .  2cL 
d 

2 p h 2  
So the seventh column of the S matrix is 

Collecting the results of equations (29), (43), (47) and (52) gives the S 

matrix: 

o ~ H X R  1 - H X R  1 AHXR - R r - &gHq 2 2 2  2 2  
h2 2v h r v h  

Here  H, R, R are considered column vectors. 

15 



Finally, it is a simple exercise to show that the product 

fact equal the unit matrix. 

If p is considered as a seventh variable 

H X R  -d 

'6 2 ph2  

+ -  l R  
211 

0 1 

S-'S does in 

16 



V UNIVERSAL FORMULATION O F  THE KEPLER PROBLEM 

The orbit parameters described in the foregoing sections a re  (with the 

exception of CI! ) not constants of the motion, hence equations must be developed 

which relate changes in Q at time t with changes at time t . These relations 

are conveniently derived from the universal solution obtained by K. Stumpff and 

first published in Reference 4. It is used as a basis for the form of the solution 

described below. Other forms of this original solution have been used by Herrick 

(Reference 5), Boyce (Reference 2) and the present authors (Reference 3).  It 

should be noted that this solution is also valid for rectilinear orbits. 

5 

0 

The solution of the two-body problem, in Cartesian coordinates, is given 

as a function of the initial conditions as  follows: 

0 
R = f  Ro + gk 

k = i R  + g k o  
0 

The functions f, g, 

increment of time from the initial time, t - to, as follows: 

and g a re  given in terms of the initial conditions and the 

G2 f = I - -  
0 r 

f = -  GI 
0 r r  

(54) 

(55) 

(56) 

(5 7) 

(58) 

(59) 

1 7  



The functions r d v r and d are defined as 
0’ 0’ 0’ 

where 

= R (to) R (to) 

1/2 
v 0 = [R(to) R (to)] 

1/2 
r = [R(t) * R ( t ) ]  = G 2 + r  

r 

a )G1 + d o G o  d = R(t) R(t) = f i (1  

2 
0 V - 1 (t) = -(t 1 ) =1- 2 - 

a a o  0 P 

The functions Gn are defined as 

where 

G = pn Fn (a) n 

OD 

(-a)k 
n (a) =L (2k+n) ! 

k=o 

18 



The variable fi is the regularization parameter used to unify the hyper- 

bolic, elliptic and parabolic cases. It is noted that /3 is always real since the 

eccentric anomaly becomes imaginary whenever the semi-major axis becomes 

negative. 

The functions F (a) are in reality the sine and cosine series with a n 
finite number of initial terms removed and with some power of Q factored out 

so that they all s tar t  with a constant term. For the hyperbolic case, a is nega- 

tive, and the F (a) are the hyperbolic sine and cosine series. In the parabolic 

case, a = 0, so that each F (a) series reduces to merely its constant term. 

To obtain the universal anomaly, 6, from the increment in time, it is necessary 

to solve Kepler's equation given below 

n 

n 

d 
0 fi(t-to) = G 3 + r  0 1 f i G 2  G + - 

Once B is determined, one merely has to form the necessary G ' s  and evaluate 

the formulas for f ,  g, 
n 

and g and the two-body system is complete. 

19 



. 
VI THE DEVELOPMENT OF THE STATE TRANSITION MATRIX FOR 

THE MODIFIED NASA VARIABLES 

The state transition matrix is defined as follows: 

Using equations (12), (15) and (17) which were developed for the purpose 

of obtaining the S-l  matrix, we can obtain the first three rows of the 13 matrix. 

These equations yield 

aR 

J 
To obtain the f i rs t  row of the 0 matrix one needs only to evaluate a a. (0) 

20 



Substituting equation (75) into (72) yields 

0 ’  
The last two terms of 75) dropped out because in the two-body system H = H 

Now aRo and 
J 

are the elements of the S (t ) matrix [see 6RO 
aaj (0) 0 aa. (0) 

equation (53) and imagine zero subscripts throughout]. It can be seen clearly 

Ro, H X k , ,  and R that H dotted into H X R 

through 6th items of the first row are  all zero. 

are all zero so that the 3rd 
0 0’ 

So equation (76) yields 

Returning to equations (73) and (74) requires - a i l  
3aj (0) 

a i  
= f  a R O  + ak 

a a. (0) 
J 

Substituting equation (78) into (73) yields 

21 



Making use of the S (t ) matrix, equation (79) gives the second row of the G 0 
matrix, namely 

To obtain the third row of the 0 matrix substitute equation (78) into 

equation (74). This yields 

In evaluating equation (81) with respect to a (0), CY (0) and a (0) the right hand 

term drops out since i and g are functions of CY (0), a (0) and CY (0) only. 

The third term is 

1 2 3 

4 5 6 

- -  - H x R . H x ( ~ R ~ + ~ R ~ )  
2 2  

h v  

-- - I H X R ~ H X R  
2 2  

h v  

= 1  

22 



So for the first three terms equation (81) gives 

The last three terms of the third row will be evaluated from equation (81) after 

the rest of the 61 matrix has been formed. 

The method for deriving the last three rows of the 0 matrix is fairly 

straightforward. It amounts to expressing a (t), 01 (t) and 01 (t) in terms of 

a4(0), a,(O), a6(0) and the G ‘s . In order to differentiate these expressions 

n 
n 

with respect to a.(O) one needs 

4 5 6 

BG 

awe) 
J J 

From equation (66) 

G = f F  ( a ) = O n F n ( 6  2 ) 
n n 

1 e2 + - -  e4 ... ] = B y , !  -(n+z)! (n+4) ! 

n+2 n+4 
+ - -  . . .  ] - 2 r e ”  

- e n  LZ - n+2! (n+4)! 

Differentiating the above equation gives 

a e  B q _ [ s ” - -  on+2 

en+l n! (n+2)? + . e *  1 aa.(o) - n  
3 

23 



From 

we have 

So equation (85) becomes 

. . .  e4 + -  e2 - -  Bn+2 a ( + ,  1 [ + 
2 aa.(O) (n-l)! (n+l)! (n+3)! 

2 8  J 

4 
+ ... 3 n n e  n e  

n! (n+2)! (n+4)! 
- - +- -- 

24 



In order to obtain aB differentiate Kepler's equation, which is of the form aa.(o) 
3 

@ A t  = G 3 + r  G + - 
0 1  f i G 2  

The differentiation of equation (88) making use of equation (87) yields 

1 
1 ax + -  ( 3 G 5 - B G 4 + r  G - r  f3G2+2-G - -  6 ~ ~ )  
2 aa.(O) J 0 3  0 G 4 f l  

(89) 1 do + -  G2 ado - - -  0 

3 c1 J 

ar 

+Gi atr.0 aaj(o) z 3/2 G2 aa . (o )  

The coefficient of aa in equation (89) is r, Finally we have aa.(o) 
3 

1 aB = - ( 3 G 5 - B G 4 + r G 3 - a A t G 2 )  - aa 
2 r  aa.(o) a a. (0) 

3 J 

25 



One other useful identity is obtained by making use of the definition of G 
n’ 

Bn - L  
a Gn+2 G =  n n ?  

This may be used to obtain 

1 G = - -  
a GI * -1 

The equations for a! (t), a! (t) and a! (t) which are to be differentiated in order 

to obtain the 4 , 5 and 6th rows respectively of the 52 matrix are as follows: 
5 6 th th4 

r 
cy4@) = d = fi(1-O a ) G l + d  0 0  G 

1 1 

0 = - a a  = - = Qp) 

01 (t) = r  = G  + r o G o  + 5 U G1 
6 2 

Making use of equation (87) for differentiating G 

equation (93), 

we have, starting with n 

(93) 

(94) 

(9 5) 

26 



F r o m  equation (91) 

1 
Go = 1 - -  a G2 

So the coefficient of is aa.(o) 
J 

1 
aa 

a a. (0) 
1 

in equation (96) is And the coefficient of 

1 - - -  ./IL [fir - / 3 r o - G 3 + @ r  - r  G + 2 r  G 
2 0 0 1  0 1  

27 



So equation (96) becomes 

3 
+ L  r -  a ( 1 - x ) ( 3 G 5 - @ G 4 + r G  2r a 

Equation (98) reduces directly to 

1 
At - 2  1 p g ( g  - 2) +./E; ( p G 4 - 3 G 5 + G  G )] 

[-: P 2r 2 3  
aa + a a. (0) 

J 

which in turn yields the fourth row of the sb matrix. 

28 



The differentiation of equation (94) yields 

n- = 1 
5, 5 

and all other elements of the fifth row equal to zero. 

The sixth row of the 0 matrix represents the partials of r(t) with respect 

to all of the alphas at to . Differentiating the expression for r given by 

equation (95) with respect to any a.(O) yields 
J 

a Q6(t) r 

a a. (0) 
J 

. And the coefficient of d - in the above equation is 
a a m  J f l  The coefficient of 

1 
aa 
J 

in equation (101) is aa.(o) 

29 



Making use of these two coefficients and the expression for aB from a a m  
equation (90) gives J 

- d ( 3  G5 - /3G4 + r G3 - Gb G2 )] 
2 

which in turn reduces directly to 

1 
+ -  1 [ - p g  2 - r G Z  2 d  + - ( ~ G * - ~ G ~ + G ~ G ~ ) ]  - aa 

3a.(O) 
J 2r f i  

+ -  1 [ d h t - d o g ]  auo a 
2Clr aj (0) 

30 



By expansion and collecting the right terms, it can be shown that the coefficient 

of in equation (103), which is in fact the hl term, is exactly 

equivalent to the previously determined value of hz 

1 

awe) 685 
J 

, namely 
695 

1 2 2 hz 6,5 = -  2r  [ - g g  - 3 q g G 3 + r 0 G 2  

+ - ( P G 4  - 3 G 5  + G 2  G3) 4ii 

+ ( 6 2 G 4 - 3 @ G 5 + 2 G 2 G 4  - 3 G 3 2 ) ]  . 

Finally, all that needs to be determined in order to have the complete hl matrix 

is the four right-hand terms of the third row, namely for j = 4 ,  5 , 6  

and p . Equation (81) can be written 

aa3(t) 
aaj(0) 

31 



th 5th th th 
The first part of equation (105) uses the 4 , , 6 and 7 columns of the 

S(t ) matrix respectively, depending on which a.(O) we are  using. So all 

that remains is to obtain an expression for the partials of i and g . Utilizing 

the second form of g in equation (59) yields 

J 0 

i a Po -- ( r - G  + -  G~ 
2Clr  2 d - F  J 

1 a a. (0) 

Equation (87) gives 

32 



i 

4 Making use of equations (107) and (90) reduces equation (106) to 

a i  - a i  = ; i (* g + G 

0 

- 
;?a. (0) 

J 
'oa. (0) i 

J 

Using the S (t ) matrix (equation (53)), the general expression for the third 0 
row (equation (105)) and the respective parts of equation (108) we have 

- 2  r f  h i - 1  0 ar = - [ 2  
3Y4 v2 r h2 

= [ g + +  d ($ g - d o ) ]  

h 2 2  
0 2v v 3Y5 

2 

0 -Ai-+ ' do 2 (1 -4 )(: g - d o )  ] 
r 

r r v  
0 r 

2 r  
(llla) h i  

r v  0 
2 h r v  2 

0 0  

- - [ - G o + ? -  

0 0  
O3,6 - 
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d G  
2 .  

f d O  ) ( l l l b )  2 
2 v  r 

s l =  
3'7  2 p h v  

Picking up the results from equations (77), (80), (83), ( log),  (110), ( l l l a ) ,  

( l l l b ) ,  (99), (loo), and (103) gives the complete 0 matrix 
- 
V 
V 
- f  
0 

--; r 

0 V 

0 

0 

0 

0 

0 

0 V -- g 
0 

r 

0 
r e  

-g 
0 

r 

0 1 

0 0 

0 

0 

0 

0 

0 

hl 
394 

g 

0 

1 
-g  r 

0 

0 

0 

n 
3, 5 

n 
4, 5 

1 

s2 
695 

0 

0 

0 

hz 
396 

r i  
0 

0 

0 
r 
- f  r 

0 

0 

0 

O3, 7 

n 
4, 7 

0 

'6, 7 

1 
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where 0 . ~ ~ 4 9  03, 5' O 3 , 6  and '3, 7 are equations (log), (110), (llla) and 

(lllb) respectively and 

= - 1 [ - p g  2 - r G Z  2 d  + - ( ( P G * - ~ G ~ + G  G ] 
2 3  f i  '6,5 2 r  

- - 1 (d At-dog) - 
'6, 7 Clr 

35 
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